М
a = pd.DataFrame({'col_1':[1, 2, np.nan, 4, 5],
'col_2':['a', 'b', 'c', 'd', 'e']})
b = pd.DataFrame({'col_1':[1, 2, np.nan, np.nan, 5],
'col_2':['a', 'b', 'c', 'd', 'e']})
b[b['col_1'].isin(a['col_1'])]
Size: a a a
М
a = pd.DataFrame({'col_1':[1, 2, np.nan, 4, 5],
'col_2':['a', 'b', 'c', 'd', 'e']})
b = pd.DataFrame({'col_1':[1, 2, np.nan, np.nan, 5],
'col_2':['a', 'b', 'c', 'd', 'e']})
b[b['col_1'].isin(a['col_1'])]
М
М
IS
N
DS
VM
import pandas as pd
import numpy as np
a = pd.DataFrame({'col_1':[1, 2, np.NaN, 4, 5],
'col_2':['a', 'b', 'c', 'd', 'e']})
b = pd.DataFrame({'col_1':[1, 2, np.nan, np.nan, 5],
'col_2':['a', 'b', 'c', 'd', 'e']})
items = a['col_1'].dropna(axis=0)
c = b[b['col_1'].isin(items)]
display(c)
АМ
VM
# генерация случайных email-адресов и файлов
partners = ['albert.einstein', 'grisha_perelman' , 'alex.markov',
'alexander_shen', 'mike_lermontov', 'katerina.shulman',
'asya.kazanceva', 'l.ulitckaya']
emails = [p + '@mail.ru' for p in partners]
files = [f'000{i}.xlsx' for i in range(1, 9)]
# print(emails)
# print(files)
# генерация словаря
# address_gen = {emails[i]: files[i] for i in range(len(emails))}
# print(addres_gen)
address = {}
address['albert.einstein@mail.ru'] = files[:3]
address['alexander_shen@mail.ru'] = files[0]
address['katerina.shulman@mail.ru'] = files[3:6]
print(address)
# OUT:
# {'albert.einstein@mail.ru': ['0001.xlsx', '0002.xlsx', '0003.xlsx'],
# 'alexander_shen@mail.ru': '0001.xlsx',
# 'katerina.shulman@mail.ru': ['0004.xlsx', '0005.xlsx', '0006.xlsx']}
А
VM
S
MD
J
IS
М
М
М
S
S