там прикольно то, что получить лин-комбинацию из всех полиномов с циклически перемешаными кофами можно, внимание: умножив их. Левый как оператор - задаёт кофы и нужные перестановки. Теперь раскрыть скобки.
Consider that a particle with mass $m$ is making a circular path of constant radius and that it is subject to the following central power: $U(r)=\alpha/r$, where $\alpha$ is a constant and $r$ is the distance from the center of rotation. Furthermore, the quantity $L=mr^2\dv*{\theta}{t}$ is conserved (it does not vary with time and so $L$ is a constant, $\theta(t)$ represents the hourly equation angle). Determine what the condition on $\alpha$ is for there to be a minimum energy and also determine which finite radius minimizes energy. Use the fact that the minimum energy (in this case) coincides with the point where the derivative is zero, $\dv{E}{r}\,(r_0)=0$.