Ну, точнее не то чтобы никуда. Никуда без слабой версии высших индуктивных типов под названием Inductive Quotient Types и без пропозициональной и функциональной экстенциональности. Без них вещественный анализ просто превращается в тыкву.
It may be of interest to some readers to know that CDLE validates axiom K for equality types(Hofmann&Streicher,1998).K,whichisequivalenttouniquenessofidentityproofs, is all one must add to Martin-L¨of Type Theory (MLTT) to support dependent patternmatching, and thus is desirable for practical programming with dependent types (Goguen et al., 2006). But K is incompatible with Homotopy Type Theory (HoTT) (Univalent Foundations Program, 2013), where distinguishing proofs of the same equality is essential to the approach.
data setquot (A : U) (R : A -> A -> U) = quot (a : A) | identification (a b : A) (r : R a b) <i> [ (i = 0) -> quot a, (i = 1) -> quot b ] | setTruncation (a b : setquot A R) (p q : Path (setquot A R) a b) <i j> [ (i = 0) -> p @ j , (i = 1) -> q @ j , (j = 0) -> a , (j = 1) -> b ]