Входной фильтр
Подавляет и существенно уменьшает уровень помех из сети, которые возникают при переходных процессах от других потребителей, атмосферного электричества.
Ещё одна функция - защита самой сети от высокочастотных импульсов силового преобразователя.
Выпрямитель
Осуществляет преобразование переменного тока в постоянный для питания инверторного модуля
ККМ - корректор коэффициента мощности.
Приводит форму тока к синусоидальной форме, а коэффициент мощности к норме - около 0,97 - 0,98 %
В англоязычной документации обозначается как PSC или PFC - power factor correction
Инверторный модуль
Из постоянного напряжения получает трёхфазное переменное для питания компрессора. Частота, переменного напряжения задаётся блоком управления в зависимости от тепловой нагрузки. Частота переключения силовых ключей при этом около 20 кГц.
На схемах обозначается - IPM - intelligent power module, то есть интеллектуальный силовой модуль.
Источник вторичного питания
Обеспечивает выходное напряжение для питания схемы управления, индикаторов, реле, драйверов для инвертора, электродвигателя вентилятора и других исполнительных механизмов.
Типовые значения постоянного напряжения:
+5 В - питание микропроцессора и микросхем
+12 В - питание реле, драйверных микросхем
+15 В - питание двигателей постоянного тока (BLDC)
Блок управления
Управление всеми блоками и механизмами кондиционера, получение информации с датчиков и её анализ, а также обмен данными с внутренним блоком.
Основные функции схемы управления:
сбор данных с датчиков (температурных, давления)
получение данных с внутреннего блока
управление инверторным модулем и компрессором
управление двигателем вентилятора
управление электронным ТРВ
коммутация четырёхходового клапана
осуществление самодиагностики
индикация ошибок
передача данных внутреннему блоку
Двигатель вентилятора
Охлаждение конденсатора и поддержание заданного давления в системе.
Для BLDC-моторов:
Получает питание +310 В с выпрямителя для питания обмоток двигателя
+15 В с источника ВП для питания схемы управления
Передаёт данные с датчика Холла о частоте вращения вентилятора на схему управления, а с неё получает сигналы управления, для обеспечения оптимального давления в системе.
Электронный ТРВ
Управляет количеством хладагента поступающего в испаритель.
Представляет из себя канал с иглой, положение которой изменяет сечение канала.
Сама игла управляется шаговым двигателем. Это позволяет очень точно регулировать поток хладагента.
По английски EEV - electronic expansion valve, то есть электронный расширительный клапан.
Четырёхходовой клапан
Обеспечивает реверс хладагента.
Управление стандартное - с помощью реле.
На схемах обозначается как 4WAY или подписывается Reversing Valve.
Блок датчиков
Назван так условно, на самом деле они располагаются по всему контуру:
датчик температуры воздуха на улице
датчик температуры конденсатора
датчик температуры нагнетания - устанавливается на нагнетающую трубку компрессора
термореле компрессора
датчик низкого давления
датчик высокого давления
датчик уровня масла в компрессоре
датчик скорости вращения вентилятора
в некоторых сериях инверторов - датчик частоты вращения ротора компрессора
Во внутреннем блоке также установлены датчики информация о состоянии которых передаётся платой управления:
датчик комнатной температуры
датчик температуры на входе в испаритель, в средней точке, на выходе (обычно установлены 1 или 2 датчика)
датчик влажности
датчик скорости вращения вентилятора
Некоторые серии инверторных кондиционеров также оснащаются линией перепуска хладагента, системами инжекции (впрыска) в компрессор, системами сбора и возврата масла и прочими, в этой схеме обозначены лишь основные узлы.
Мы рассмотрели структурную схему инвертора с двойным преобразованием, существуют также инверторы постоянного тока (DC Inverter).