JF
Size: a a a
JF
JF
JF
data = load_wine()
df = pd.DataFrame(data['data'], columns=data['feature_names'])
df['Target'] = data['target']
X = df.drop('Target', axis=1)
y = df['Target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
start_time = time.time()
svc = LinearSVC(random_state=42)
svc.fit(X_train, y_train)
test_predictions = svc.predict(X_test)
train_predictions = svc.predict(X_train)
print("Train:")
print(classification_report(y_train, train_predictions))
print("Test:")
print(classification_report(y_test, test_predictions))
print("--- %s seconds ---" % (time.time() - start_time))
JF
JF
JF
JF
NM
JF
JF
JF
data = load_wine()
df = pd.DataFrame(data['data'], columns=data['feature_names'])
df['Target'] = data['target']
X = df.drop('Target', axis=1)
y = df['Target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
start_time = time.time()
svc = LinearSVC(random_state=42)
svc.fit(X_train, y_train)
test_predictions = svc.predict(X_test)
train_predictions = svc.predict(X_train)
print("Train:")
print(classification_report(y_train, train_predictions))
print("Test:")
print(classification_report(y_test, test_predictions))
print("--- %s seconds ---" % (time.time() - start_time))
JF
NM
JF
JF
NM
NM
JF
JF
JF