Size: a a a

2020 May 30

 P

 ‌‌Gleb Pilipets... in pro.algorithms
аххаха
источник

V

Viktor in pro.algorithms
Mikail Bagishov
Если у нас есть N вариантов, и мы отмели N-1, то последний можно и не проверять
Ты переучился...
источник

MB

Mikail Bagishov in pro.algorithms
Viktor
Ты переучился...
уже и пошутить нельзя
источник
2020 May 31

A

Ajay in pro.algorithms
u ^ c1 = c2
u ^ c3 = c4
c1,c2,c3,c4 are known values, how to find u(which is unknown) ?


PS: ^ is AND
источник

V🇺

Vladislav 🇺🇸🚜🇷🇺... in pro.algorithms
u = c1 ^ c2 = c3 ^ c4
источник

DK

Dmitry Kozyrev in pro.algorithms
Ajay
u ^ c1 = c2
u ^ c3 = c4
c1,c2,c3,c4 are known values, how to find u(which is unknown) ?


PS: ^ is AND
^ is XOR or POW?
источник

e

evaN in pro.algorithms
Dmitry Kozyrev
^ is XOR or POW?
Ксор, очевидно
источник

A

Ajay in pro.algorithms
Dmitry Kozyrev
^ is XOR or POW?
those are AND operations
источник

f

fulcanelly in pro.algorithms
Ajay
u ^ c1 = c2
u ^ c3 = c4
c1,c2,c3,c4 are known values, how to find u(which is unknown) ?


PS: ^ is AND
and is &
источник

MB

Mikail Bagishov in pro.algorithms
Ajay
those are AND operations
You should solve problem for each bit separately.
источник

MB

Mikail Bagishov in pro.algorithms
For each bit, you have 2 rules.

Rule 1.
Exists equation
X & 1 = 0.
Then X = 0.

Rule 2.
Exists equation
X & 1 = 1.
Then X = 1.
источник

MB

Mikail Bagishov in pro.algorithms
If both rules applied at least once, than no such U exists.
If only one rule applied, bit value is restored.
Otherwise, both 0 and 1 suffice as bit value.
источник

A

Ajay in pro.algorithms
Is there a efficient way of iterating over all the factors pairs of a number (more efficient than sqrt(n))?
источник

DK

Dmitry Kozyrev in pro.algorithms
this is cbrt(n)
источник

A

Ajay in pro.algorithms
Dmitry Kozyrev
this is cbrt(n)
which?
источник

DK

Dmitry Kozyrev in pro.algorithms
Algo for factorization in time O(N^(1/4)) is well-known
источник

A

Ajay in pro.algorithms
does that have a name?
источник

DK

Dmitry Kozyrev in pro.algorithms
Then you have cbrt(n) pairs of divisors and you can iterate over all of them
источник

DK

Dmitry Kozyrev in pro.algorithms
Ajay
does that have a name?
Yes, you can find it by first link in google using your initial question
источник

mq

m q in pro.algorithms
а когда на аткодере обычно рейтинги обновляют?
источник