У меня взорвался мозг - оказывается есть недоказанная теорема, очень простая. Допустим, у вас есть число x. Если четное, то делим на 2. Если нечетное, то 3x+1. Повторяем. Теория состоит в том, что любое число в результате становится 1.
Прикол в том, что до 2 в 68 степени пробрутфорсили, и это верно. Для этогл набора чисел. Но не доказано, что для каждого натурального это тоже работает
Я давно не решал задачи (что очень любил в школе и универе). Но я так понимаю, путём 3х+1 нужно подползти к ряду 2 в степени n, и потом путём деления дойти до 1. Но это сырая мысль