RM
Size: a a a
RM
RM
RM
let rec fib n a b = match n with
| 0 -> a
| 1 -> b
| _ -> fib (n - 1) b (a + b)
🦉
let rec fib n a b = match n with
| 0 -> a
| 1 -> b
| _ -> fib (n - 1) b (a + b)
let rec fact n = if n=1 then 1 else n*fact(n-1)
🦉
let rec fib n a b = match n with
| 0 -> a
| 1 -> b
| _ -> fib (n - 1) b (a + b)
let fact = let rec fact' f = function | 1 -> f 1 | n -> fact' (f>>((*)n)) (n-1) fact' (fun x->x)
λ
λ
λ
λ
RM
λ
RM
RM
λ
λ
RM
let rec fib = function
| 0 | 1 -> 1
| n -> fib (n-1) + fib (n-2)
RM
| 0 -> 1
| 1 -> 1
RM
let rec fib = function
| 0 | 1 -> 1
| n -> fib (n-1) + fib (n-2)